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Abstract In this work, we applied machine learning techniques to Raman spectra
for the characterization and classification of manufactured pharmaceutical products.
Our measurements were taken with commercial equipment, for accurate assessment
of variations with respect to one calibrated control sample. Unlike the typical use of
Raman spectroscopy in pharmaceutical applications, in our approach the principal
components of the Raman spectrum are used concurrently as attributes in machine
learning algorithms. This permits an efficient comparison and classification of the
spectra measured from the samples under study. This also allows for accurate quality
control as all relevant spectral components are considered simultaneously. We demon-
strate our approach with respect to the specific case of acetaminophen, which is one of
the most widely used analgesics in the market. In the experiments, commercial sam-
ples from thirteen different laboratories were analyzed and compared against a control
sample. The raw data were analyzed based on an arithmetic difference between the
nominal active substance and the measured values in each commercial sample. The
principal component analysis was applied to the data for quantitative verification (i.e.,
without considering the actual concentration of the active substance) of the difference
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in the calibrated sample. Our results show that by following this approach adulterations
in pharmaceutical compositions can be clearly identified and accurately quantified.

Keywords Acetaminophen · Machine learning · Polymorph detection · Principal
components analysis · Raman spectroscopy

1 Introduction

The normativity for the quality control of medications, despite having some differences
from country to country, is in accordance with international legislations that facilitate
and ensure trade of safe medication for patients and their medical treatment [1]. In
Mexico, for instance, there exist norms such as NOM-001-SSA1-2010 and NOM-
059-SSA1-2015 that provide a legal framework for the assessment of the medication,
an adequate manufacturing process and methods that are to be followed for quality
control [2].

The trade of counterfeit drugs, which takes place predominantly in Asian countries
such as China, India, and Russia, has increased due to the availability of cheaper
options and the willingness to get treatment without prescriptions from a wide variety
of drugs, both branded and generic [3, 4]. According to the World Health Organization,
25 % to 50 % of cases in developing countries have shown that undeclared drugs that
are purchased are in many cases counterfeit [5, 6].

In general, the main criteria of evaluating the quality of medications are purity,
efficacy, uniformity of pharmaceutical formula, bio-disposability, and stability [3].
Medication with low or deficient quality may, in the best case, fail to achieve the desired
effect. In many situations, however, low-quality medications can be severely harmful
for the patient and may sometimes result in new medical conditions. Unfortunately,
such low-quality medications are commonly encountered in today’s pharmaceutical
market.

Adequate quality control is complicated due to several factors such as complex
manufacturing process, packaging, storage and aging. These are some of the factors
among others that might adversely influence the composition of the final product [4].
The problem becomes even more complicated with the availability of polymorphs,
i.e., when certain substances exist in different natural structures, and with different
properties owing to the difference in their physical origins. For instance, polymorphs
can result from differences in manufacturing, processing, or due to improper storage,
and aging [7]. This is critical because active ingredients of the formula may transition
from a stable, efficacious form to unwanted structural analogues.

Although identical in chemical composition, polymorphs differ in chemical and
physical properties including bioavailability, solubility, dissolution rate, chemical and
physical stability, melting point, filterability, density, flow rate [8]. Solubility, for
instance, is of importance in pharmaceutics as it can affect drug efficacy, bioavailabil-
ity, and safety. In this context, there is a need for techniques of advanced analysis and
characterization that could provide reliable means of ascertaining the quality of med-
ications, including effective identification and discrimination of polymorphic forms
for adequate quality control.
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One well-established technique for identification of polymorphs is infrared spec-
troscopy and X-ray diffraction [9]. Other techniques such as thermo-microscopy [10],
a variant of polarized light microscopy, have proved extremely powerful and signifi-
cantly simpler to implement. Moreover, the mathematical description obtained from
combining thermo-microscopy together with differential scanning calorimetry and dif-
ferential thermal analysis [11] is useful for understanding the thermodynamic nature
of polymorphism [12, 13].

Raman spectroscopy (RS) is an analytical technique based on inelastic scatter-
ing of monochromatic light [14–16]. This technique has become important in recent
years due to its variety of applications in areas such as mineralogy, forensics, biology,
and medicine [14]. It is also used, for instance, in the characterization of drugs, bone
structures, and organic pesticides [17]. In general, RS and its various applications have
proved effective in the detection of polymorphs and the characterization of their phys-
ical properties [18–22]. Use of RS has become very widely popular in pharmaceutical
applications [23–25]. It plays an important role in quality control and manufacturing,
including assessment of pharmacological formula for a product and for comparing
it to certified spectroscopic calibration curves provided by certified agencies. Typical
spectroscopic applications relate to supervision and control of large-scale manufactur-
ing, especially in order to outline the distribution of active pharmaceutical ingredients
and excipients in the different stages of a development cycle [26, 27]. This technique
offers unparalleled discrimination of materials, both for analysis of liquid and solid
samples. In addition, it is particularly suitable for combination with other analytical
techniques since it provides a non-destructive assessment with minor requirements of
sample preparation [28, 29]. For instance, RS has been applied to study various crystal
forms and solvates of ampicillin and griseofulvin [30]. Some other examples include
popular drugs like acetaminophen [31–33].

It has been recognized that, among the number of different techniques of charac-
terization mentioned above, RS allows for fast assessment as it requires only a few
seconds for each measurement cycle. Nevertheless, this advantage typically vanishes
in practical applications due to the low reliability of data processing and the absence
of an accurate system of classification, with the consequent need to perform backup
measurements for the same instances by using more than one technique [34].

In this work, we propose an improvement on the typical use of RS, i.e., the
identification of biochemical differences among supposedly similar commercially
available medications. Machine learning techniques combined with the Raman spectra
method may be used to develop an approach for characterization and classification of
manufactured pharmaceutical products. Measurements were taken with commercial
equipment, for accurate assessment of variations with respect to a calibrated control
sample. In our approach, the principal components of the Raman spectrum are used
together as attributes within the machine learning algorithms. This permits compari-
son and classification of the spectra obtained from the studied samples. This permits
accurate quality control since all the relevant spectral components are considered
simultaneously.

We experimentally demonstrate our approach for the specific case of
acetaminophen, which is the most popular analgesic and antipyretic available in the
market. It has been popularized in combating diseases such as influenza and common
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cold. Unfortunately, this medication is highly unstable and can be easily hydrolyzed
in aqueous solution [30]. During manufacture, this drug may experience alterations
that, if undetected, may result in severe adulterations.

In our experiments, commercial samples from thirteen different laboratories were
analyzed and compared against a control sample. The raw data were analyzed by
means of the arithmetic differences between the pure active substance and samples
from each different laboratory. The principal component analysis (PCA) was applied
to the set of experimental measurements to qualitatively evaluate the differences in
each pharmaceutical formulation.

2 Methodology

In our experiments, we used a commercial Thermo Scientific DXR Raman spec-
troscopy equipment. This equipment has an excitation laser of 780 nm and 24 mW,
and a built-in microscope objective (50X). Samples from thirteen different pharma-
ceutical laboratories were analyzed. The samples consisted of commercially available
tablets (pills) from each of these manufacturers. A sample of acetaminophen provided
by the Mexican National Health Secretary was used as control. As part of the pro-
cedure for quality control in the country, this same sample is the one provided to all
pharmaceutical manufacturers for comparing their products with a certified reference.
For each of the laboratories, twenty-five different Raman spectra were collected from
twenty-five different tablets, i.e., twenty-five pills per laboratory, one Raman spectrum
per tablet, and then each one measured at a random position on the pill. Each of these
spectra was measured in the range from 100 cm−1 to 1800 cm−1 with resolution of
0.965 cm−1. The dynamic range of the measurement was calibrated by following stan-
dard approaches using least-squared methods for the elimination of any background
noise, and by normalizing them with respect to the peak of maximum amplitude [35,
36]. The PCA was applied to all the Raman spectra recorded so that a qualitative
measure of similarity with respect to the control could be obtained. For PCA, we con-
sidered the whole spectral range of the instrument (100–1800 cm−1) and the analysis
was carried out using all 1764 data points recorded for each Raman spectrum.

2.1 Raman Spectroscopy Experiments

Acetaminophen shows three polymorphic forms [7]. Forms I and II are known to
reveal a packing polymorphism in which molecular conformations are the same, but
crystal packing is different. The commercial form of acetaminophen polymorph is
form I. Acetaminophen form II is slightly more soluble than form I and suitable for
direct compression but is less stable and susceptible to transformation into form I
during compression and storage [6]. Form II can be obtained by crystallizing solids
in benzyl alcohol at high temperature, by cooling the melt, and by adding carboxylic
acid additives to it, or by using the evaporation method. Form III is known to be highly
unstable, and it is obtained by cooling the melt. It undergoes solid-state polymorphic
transformation to form II within hours [6]. Recently, it was shown that form III can
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Fig. 1 Averaged Raman spectra measured in the experiments. The curves represent the average of 25
independent measurements as described in theMethodology. Different laboratories are indicated with letters
from A to M. The control (active substance) is shown as the top line. The curves were shifted vertically for
visualization purposes

easily crystallize in nano-confined structures with a pore size ranging from 10 nm to
103 nm [18].

2.2 Preliminary Comparative Analysis

The variations in the Raman spectra both within the subsets of the same laboratory
as well as between different manufacturers are directly determined by mechanisms of
quality control used during manufacture. As shown in Fig. 1, variations with respect
to the control can be significant in some cases.

These variations represent differences in the relative fractions of the real active
substances, i.e., differences in the amplitude of the peaks (at the “right” locations) and
differences in the actual composition of the formula, i.e., in new peaks in the spectrum
(at other frequencies). In any case, it is important to quantify these differences as
they may have an impact on patient recovery. Even from the simplest measures of
variability, i.e., point-by-point differences, we could observe significant variations
with respect to the control (data not shown).

To elaborate more detailed comparisons between different laboratories, a regression
analysis to find the best subsets was run with each of the 25 Raman spectra (of the active
substance) as response variables and two randomly selected spectra (per laboratory) as
prediction variables. In each run, five of the best spectra were selected among the total
of 26 included. The coefficient of determination, R2, was then calculated to quantify
the variability on the dependent variable as it would be explained by the variations on
the independent variables. Table 1 shows the value of R2 obtained for 125 (out of the
total 325) randomly selected spectra. In order to track the particular spectrum involved
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in the comparison, the following code was used: In the column “Variable,” the first
letter indicates the laboratory (labeled from A to M), while the number following this
letter indicates the index of the measurement for that particular sample (from 1 to 25).
Results are shown in Table 1.

Based on this R2 analysis, the presence of a laboratory spectrum on the best subset
indicates that the spectra of this laboratory sample have little differences when com-
pared to the control spectra. Thus, high percentages indicate no significant difference
between the laboratory samples and control for several comparisons and therefore the
presence of this laboratory sample within the best subsets is not random.

The correlation analysis shown in Table 2 confirms that laboratory L is closest to
the control as in 100 % of times at least one sample of laboratory spectra L was found
on the best subsets. In each run of a regression model, two samples of each laboratory
were included. In the case of laboratory L, 88 % of the samples were placed on the best
subsets. Subsequent places are occupied by laboratories J, G, C, and A, respectively.

2.3 Principal Component Analysis

A more accurate quantification of the spectral variations between different laboratories
and the control was performed by means of a PCA. The principal components refer to
the peaks of greater intensity in the Raman spectra such as contain information on the
absence or presence of spectral components. The first three principal components of the
recorded Raman spectra were plotted in order to visualize the characteristic dispersion
of the samples from different laboratories, a phenomenon inherently associated with
compositional homogeneity.

Figure 2 shows the features of the dispersion group corresponding to each labora-
tory, including control. Figure 2a–c shows the comparisons between different pairs of
principal components, respectively, while Fig. 2d shows the three principal compo-
nents simultaneously. For clarity, the control is plotted in color (blue), while all the
laboratories are plotted in black markers.

It can be observed that laboratories A, C, G, I, L, and M are closer to the control.
It can also be noticed that samples from these laboratories have little dispersion, i.e.,
high composition homogeneity. Conversely, laboratories J, H, F, and K are both more
dispersed and more different from the control. Interestingly, laboratories D, E, and B
significantly differ from the control but show good compositional homogeneity.

2.4 Data Classification

The goal of the present work is not just to present differences in quantification but
also provide a classification for them and to measure their potential impact. In doing
so, we followed the standard classification of defects in quality as indicated in the
Spanish Health Society for drug management in which the substance under study is
assigned a category from 1 to 3, depending upon how it differs from the control. In this
classification, category 1 represents the largest difference with respect to the control
and, therefore, contains samples that are potentially spurious.
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Fig. 2 (a) PCA of the acetaminophen spectra. Scatter plots of the scores from the first two principal com-
ponents (PC 1 vs PC 2) for the different laboratories (thirteen groups: A-M) versus the control group (active
substance: blue dots). (b) Plots of the first principal component (PC 1) versus the three principal component
(PC 3) for the different laboratories (thirteen groups: A-M) versus the control group (active substance: blue
dots). (c) Plots of the first principal component (PC 3) versus the three principal components (PC 1) for
the different laboratories (thirteen groups: A-M) versus the control group (active substance: blue dots). (d)
Scatter plots of the scores from the first three principal components (PC 1 vs PC 2 vs PC 3) for the different
laboratories (thirteen groups: A-M) versus the control group (active substance: blue dots) (Color figure
online)

The data classification was carried out automatically by means of a Naïve Bayes
algorithm in which the attributes of the classification were considered as the first prin-
cipal components of the Raman spectra. As mentioned above, the so-called principal
components refer to the peaks of greater intensity in the Raman spectra which contain
information on the absence or presence of spectral components. The control spectra
(25 spectra from the control sample) were used as the training set.

As part of this classification approach, a two-factor experiment was designed with
the two factors being the laboratories and the Raman shift correspondingly. The first
factor has fourteen levels, each level corresponding to one of the laboratory samples
used in the experiment. Raman shifts have four levels. Levels 1, 2, and 3 correspond
to Raman shifts in the ranges of 300–550 cm−1, 75–900 cm−1, 1100–1500 cm−1, and
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Table 3 Performance of the
classification approach proposed

Class Variation (%)
(with respect
to control)

Precision (%) Recall (%)

3 0– 5 98 97

2 5–15 96 98

1 > 15 96 97

level 4 to 1500–1700 cm−1, respectively. The design was made with four runs. For
each run, a Raman shift was randomly selected. The response variable is the median
intensity of the samples of each laboratory on the randomly selected Raman shift.

Classifiers can be developed by using several techniques such as neural networks,
logistic regression, heuristics, decision trees, and Bayesian methods. Because of the
various implementations and their sensitivity to the particular set on which they are
applied, a general quantification of the performance is typically pursued in terms of the
following parameters: true positives (TP), false positives (FP), false negatives (FN),
and true negatives (TN). By counting each of these occurrences, final measures of per-
formance such as precision, recall, or the so-called f1 score (combination of precision
and recall) can be calculated. In our case, the metrics used were that of precision and
recall defined as the number of correct classifications based on the number of attempts
made, i.e., P = TP/(TP + FP), and the number of correct classifications based on the
number of total possible attempts R = TP/(TP + FN), respectively.

All spectra from laboratories (325 in total) were used as test sets in the automatic
classification systems; the results of the performance metrics obtained are shown in
Table 3.

The final results of the proposed characterization and classification system show
that in all cases the samples can be categorized with precision of at least 96 %. Thus,
the confidence in the outcome of the analysis is high.

3 Conclusions

Unlike the typical use of Raman spectroscopy in pharmaceutical applications, in our
approach the principal components of the Raman spectrum are used concurrently as
attributes in the machine learning algorithms. This is used for comparison and classi-
fication of the spectra measured from the studied samples. This allows performance of
an accurate quality control as all relevant spectral components are considered simul-
taneously. The main goal of our work is to show that PCA applied on Raman spectra
can be a suitable tool for clearly detecting quantitative differences between different
pharmaceutical products. We experimentally demonstrate our approach for the specific
case of acetaminophen, one of the most broadly used analgesics. Our results show that
differences with respect to a control sample can be accurately identified and quantified,
and that their potential impact can be classified with an accuracy of at least 96 %. In
principle, this type of analysis can be extended to other medications or pharmaceuti-
cal products, and quality settings can be defined according to particular rules. Future
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work may relate to the inclusion of this classificatory procedure in mobile spectro-
scopic devices, in order to perform in situ quality control. In Mexico, this inspection
is necessary as significant variations are revealed in the analyzed commercial samples
and in their difference from prescribed controls.
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